Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer
نویسندگان
چکیده
BACKGROUND Variants of the green fluorescent protein (GFP) with different colors would be very useful for simultaneous comparisons of multiple protein fates, developmental lineages and gene expression levels. The simplest way to shift the emission color of GFP is to substitute histidine or tryptophan for the tyrosine in the chromophore, but such blue-shifted point mutants are only dimly fluorescent. The longest wavelengths previously reported for the excitation and emission peaks of GFP mutants are 488 and 511 nm, respectively. RESULTS Additional substitutions, mainly in residues 145-163, have improved the brightness of the blue-shifted GFP mutants with histidine and tryptophan in place of tyrosine 66. Separate mutations have pushed the excitation and emission peaks of the most red-shifted mutant to 504 and 514 nm, respectively. At least three different colors of GFP mutants can now be cleanly distinguished from each other under the microscope, using appropriate filter sets. A fusion protein consisting of linked blue- and green-fluorescent proteins exhibits fluorescence resonance energy transfer, which is disrupted by proteolytic cleavage of the linker between the two domains. CONCLUSIONS Our results demonstrate that the production of more and better GFP variants is possible and worthwhile. The production of such variants facilitates multicolor imaging of differential gene expression, protein localization or cell fate. Fusions between mutants of different colors may be useful substrates for the continuous in situ assay of proteases. Demonstration of energy transfer between GFP variants is an important step towards a general method for monitoring the mutual association of fusion proteins.
منابع مشابه
Fluorescence fluctuation spectroscopy of mCherry in living cells.
The red fluorescent protein mCherry is of considerable interest for fluorescence fluctuation spectroscopy (FFS), because the wide separation in color between mCherry and green fluorescent protein provides excellent conditions for identifying protein interactions inside cells. This two-photon study reveals that mCherry exists in more than a single brightness state. Unbiased analysis of the data ...
متن کاملImproving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting
Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We pr...
متن کاملDirected evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging.
The arsenal of engineered variants of the GFP [green FP (fluorescent protein)] from Aequorea jellyfish provides researchers with a powerful set of tools for use in biochemical and cell biology research. The recent discovery of diverse FPs in Anthozoa coral species has provided protein engineers with an abundance of alternative progenitor FPs from which improved variants that complement or super...
متن کاملFluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus.
Cells respond to environmental cues by modifying protein complexes in the nucleus to produce a change in the pattern of gene expression. In this article, we review techniques that allow us to visualize these protein interactions as they occur in living cells. The cloning of genes from marine organisms that encode fluorescent proteins provides a way to tag and monitor the intracellular behavior ...
متن کاملStructure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%
Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 6 شماره
صفحات -
تاریخ انتشار 1996